Home
Class 12
MATHS
If y= x^(x^(x...)), then show that dy/dx...

If `y= x^(x^(x...))`, then show that `dy/dx = frac{y^2}{x(1-log y)}`

A

y

B

`-y`

C

`-y^(2)`

D

`y^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = e^(x/y) , then show that dy/dx = frac{x-y}{x log x}

If x^y = e^(x-y) , then show that dy/dx = frac{log x}{(1+ log x)^2}

If e^y = y^x , then show that dy/dx = frac{(log y)^2}{log y -1}

If y= sqrt (log x + sqrt (log x + sqrt (log x + ......oo))) , then show that dy/dx = frac{1}{x(2y-1)}

Solve the following: If x = e^ sin 3t , y= e^cos 3t , then show that dy/dx = - frac{y log x}{x log y}

If sqrt (1- x^2 ) + sqrt (1- y^2 ) = a(x-y), then show that dy/dx = sqrt ( frac{1- y^2 }{1- x^2 } )

Solve the following: If x = a cos^(3) t, y= a sin^(3) t, then show that dy/dx = - (frac{y}{x})^(1/3)

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y= sqrt (cos x + sqrt (cos x + sqrt (cos x + ......oo))) , then show that dy/dx = frac{sin x}{1-2y}

If sin y = x sin(a+y), then show that dy/dx = frac{ sin^2 (a+y)}{sin a}