Home
Class 12
MATHS
If x=a(cos t + log tan (t/2)), y =a sin ...

If `x=a(cos t + log tan (t/2))`, `y =a sin t` then `(dy)/(dx)=`

A

tan t

B

`-tan t`

C

cot t

D

`-cot t `

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if: x= a(cos t + log tan (t/2)), y= a sin t

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

If x= a(cos t + tsin t), y= a(sin t- t cos t) , then dy/dx .............. A) cot t B) -tan t C) sqrt (tan t) D) tan t

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= e^t (sin t - cos t) , y= e^t (sin t + cos t) , find dy/dx at t= pi/4

If x= a sin t - b cos t, y= a cos t + b sin t , show that (d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)