Home
Class 12
MATHS
If cos x =1/sqrt(1+t^(2)), and sin y = t...

If `cos x =1/sqrt(1+t^(2))`, and `sin y = t/sqrt(1+t^(2))`, then `(dy)/(dx)` =

A

`-1`

B

`1/(1+t^(2))`

C

`(1-t)/(1+t^(2))`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=a ( tcos t- sin t ) ,y =a ( tsin t +cos t ),then (dy)/(dx) =

If x= sqrt ( a^( sin^(-1) t) ) and y= sqrt ( a^( cos^(-1) t) ), then show that dy/dx = -(y/x)

Solve the following: If x = sin^(-1) (e^t), y= sqrt (1- e^(2t)) , show that sin x + dy/dx =0