Home
Class 12
MATHS
If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t...

If `x=(1-t^(2))/(1+t^(2))` and `y=(2t)/(1+t^(2))`, then `(dy)/(dx)` is equal to

A

`-y/x`

B

`y/x`

C

`-x/y`

D

`x/y`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x= sin^(-1)(3t-4t^(3)) and y=cos^(-1)(sqrt(1-t^(2))) , then (dy)/(dx) is equal to

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=a(t-sint), y=a(1-cost) , then (dy)/(dx) is equal to

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =

If x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx is equal to

let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is