Home
Class 12
MATHS
If x=a(1-costheta) , y=a(theta+sintheta)...

If `x=a(1-costheta)` , `y=a(theta+sintheta)` , prove that `(d^2y)/(dx^2)=-1/a` at `theta=pi/2` .

A

`1/a`

B

`-1/a`

C

a

D

`-a`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= a(costheta + sintheta), y= a(sintheta + costheta) , then (d^2y)/(dx^2) at theta = pi/4 .............

If x= a cos theta , y= b sin theta , show that ( d^2 y)/(d x^2 ) = - b^4 /a^2y^3

If x= a(cos theta + sin theta ), y= a(sin theta + cos theta ), then [( d^2 y)/(d x^2 ) ] at theta = pi /4 ............. A) 0 B) 1 C) -1 D) 1/sqrt 2

If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

If x=acostheta,y=bsintheta , then (d^2y)/(dx^2) when theta=pi/4 is given by

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If y=log(1+ theta), x= sin^(-1) theta , then (dy)/(dx) =

If x= a cos theta, y= b sin theta , show that a^2[y (d^2 y)/(dx^2) +(dy/dx)^2] + b^2 = 0

If x = a cos^(3) theta, y = a sin ^(3) theta then sqrt(1+((dy)/(dx))^(2)) =?