Home
Class 12
MATHS
if f(2)=4,f'(2)=1 then lim(x->2){xf(2)-2...

if `f(2)=4,f'(2)=1` then `lim_(x->2){xf(2)-2f(x)}/(x-2)`

A

1

B

2

C

3

D

-2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is differentiable at x=a, then lim_(x toa)(x^2f(a)-a^2f(x))/(x-a) is equal to

If f(x)=f(2-x) then int_(0. 5)^1.5 xf(x)dx=

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f is differentiable at x=1, Then lim_(x to1)(x^2f(1)-f(x))/(x-1) is

If f'(x)=x^2+5 and f(0)=-1 then f(x)=

If f(2)=2 and f'(2)=1, and then underset(x to 2) lim (2x^(2)-4f(x))/(x-2) is equal to

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "then " underset(x to 2)lim (f(x)-f(2))/(x-2)=

If inte^(2x)f'(x)dx=g(x) , then int[e^(2x)f(x)+e^(2x)f'(x)]dx=