Home
Class 12
MATHS
If f(x) is differentiable at x=a, then l...

If f(x) is differentiable at x=a, then `lim_(x toa)(x^2f(a)-a^2f(x))/(x-a)` is equal to

A

`a^2f(a)-2af'(a)`

B

`2a f(a)+a^2f'(a)`

C

`2a f(a)-a^2f'(a)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f is differentiable at x=1, Then lim_(x to1)(x^2f(1)-f(x))/(x-1) is

if f(2)=4,f'(2)=1 then lim_(x->2){xf(2)-2f(x)}/(x-2)

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

If f(2)=2 and f'(2)=1, and then underset(x to 2) lim (2x^(2)-4f(x))/(x-2) is equal to

Suppose f(x) is differentiable at x = 1 and lim_(h->0) 1/h f(1+h)=5 , then f'(1) equal

If f(x)=|{:(x,sinx,cosx),(x^2,tanx,x^3),(2x,sin2x,5x):}| then lim_(x to 0)(f'(x))/x is equal to

Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2. IF lim_(xto0) [1+(f(x))/x^2]=3 , then f(2) is equal to

If f(x) = 1/(1-x) , then f(f(f(x))) is equal to