Home
Class 12
MATHS
d/(dx)[e^xlog(1+x^2)]=...

`d/(dx)[e^xlog(1+x^2)]=`

A

`e^x[log(1+x^2)+(2x)/(1+x^2)]`

B

`e^x[log(1+x^2)-(2x)/(1+x^2)]`

C

`e^x[log(1+x^2)+(x)/(1+x^2)]`

D

`e^x[log(1+x^2)-(x)/(1+x^2)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)(e^xlogsin2x)=

d/(dx)log_|x|e=

d/(dx) (e^(x sin x)) =

d/(dx)(e^sqrt(1-x^2).tanx)=

d/(dx)[log{e^x ((x-2)/(x+2))^(3/4)}]=

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........

The integrating factor of the differential equation (dy)/(dx)(x log_e x)+y=2 log_e x is given by