Home
Class 12
MATHS
d/(dx)(e^sqrt(1-x^2).tanx)=...

`d/(dx)(e^sqrt(1-x^2).tanx)=`

A

`e^(sqrt(1-x^2))[sec^2x+(xtanx)/(sqrt(1-x^2))]`

B

`e^(sqrt(1-x^2))[sec^2x-(xtanx)/(sqrt(1-x^2))]`

C

`e^(sqrt(1-x^2))[sec^2x+(tanx)/(sqrt(1-x^2))]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx)[e^xlog(1+x^2)]=

d/(dx)(e^xlogsin2x)=

d/(dx) (e^(x sin x)) =

d/(dx)[(e^(ax))/(sin(bx+c))]=

If f(1)=3 , f'(1)=2 , then d/(dx) {logf(e^x+2x)} at x=0 is equal to........

d/(dx) (e^(x^3)) is equal to

d/(dx) (tan^(-1)((e^(2x)+1)/(e^(2x)-1)))=

d/(dx)[log{e^x ((x-2)/(x+2))^(3/4)}]=

The solution of the differential equation (dy)/(dx)=e^x+cosx+x+tanx is