Home
Class 12
MATHS
if y=logx*e^((tanx+x^(2))), then (dy)/(d...

if `y=logx*e^((tanx+x^(2)))`, then `(dy)/(dx)` is equal to

A

`e^((tanx+x^2))[1/x+(sec^2x+x)logx]`

B

`e^((tanx+x^2))[1/x+(sec^2x-x)logx]`

C

`e^((tanx+x^2))[1/x+(sec^2x-x)logx]`

D

`e^((tanx+x^2))[1/x+(sec^2x-2x)logx]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If x^(y) = e^(2(x-y)), "then" (dy)/(dx) is equal to

If y=(sinx)^(tanx),then(dy)/(dx) is equal to

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If y =( cos x ^(2))^(2) , "then" (dy)/(dx) is equal to

If y=(cosx^2)^2 , then dy/dx is equal to

If (y/x) + (x/y)=2 , then (dy)/(dx) is equal to

If y=x+e^x , then (d^2x)/(dy^2) is equal to