Home
Class 12
MATHS
If y=tan^(-1)((sqrt(1+x^2)-1)/x), then y...

If `y=tan^(-1)((sqrt(1+x^2)-1)/x)`, then `y'(1)` is equal to

A

`1/4`

B

`1/2`

C

`-1/4`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

If y = tan^(-1)((x)/(sqrt(1 -x^2))) , then (dy)/(dx) is equal to

IF y=tan^-1((sqrtx-x)/(1+x)^(3/2)) then y'(1) is

The differential coefficient of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x is equal to..........

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=

If y= sec (tan^(-1) (x)) , then dy/dx at x=1 is equal to ......... A) 44198 B) 1 C) 1/sqrt 2 D) sqrt 2

Differential coefficient of tan^(-1)sqrt((1-x^2)/(1+x^2)) w.r.t. cos^(-1)(x^2) is equal to.....

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is