Home
Class 12
MATHS
If y=(sinx)^(tanx),then(dy)/(dx) is equa...

If `y=(sinx)^(tanx),then(dy)/(dx)` is equal to

A

`(sinx)^(tanx).[1+sec^2x.log(sinx)]`

B

`tanx.(sinx)^(tanx-1).cosx`

C

`(sinx)^(tanx).sec^2.x.log(sinx)`

D

`tanx.(sinx)^(tanx-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If 2y=sin^-1(x+5y),then,(dy)/(dx) is equal to

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

If y=(tanx)^(sinx) , then dy/dx=

If (y/x) + (x/y)=2 , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

if y=logx*e^((tanx+x^(2))) , then (dy)/(dx) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y = f(ax^(2) + b) , then (dy)/(dx) is equal to