Home
Class 12
MATHS
If y=(xlogx)^(log(logx)), then (dy)/(dx)...

If `y=(xlogx)^(log(logx))`, then `(dy)/(dx)` is

A

`(x logx)^(log(logx)){1/(xlogx)[logx+log(logx)]+log(logx)(1/x+1/(xlogx))}`

B

`(x logx)^(x logx)log(logx)[2/(logx)+1/x]`

C

`(x logx)^(x logx)(log(logx))/2[1/(logx)+1]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(log(logx^3)) then (dy)/(dx)=

if y=logx*e^((tanx+x^(2))) , then (dy)/(dx) is equal to

If y=log_2 (log_2 x) , then (dy)/(dx) =

If y = x^(2) + x^(log x) , then (dy)/(dx) is

If y = x^(log x) , then (dy)/(dx) equals

If y=log(sqrt(x) + sqrt(x-a)) , then (dy)/(dx) is

If y=tan^(-1)[(logex)/(log (e/x))] + tan^(-1)[(8-logx)/(1+8 logx)] , then (d^(2)y)/(dx^(2)) is