Home
Class 12
MATHS
If x^p y^q= (x+y)^(p+q), then prove that...

If `x^p y^q= (x+y)^(p+q)`, then prove that `dy/dx = y/x`

A

`y/x`

B

`-y/x`

C

`x/y`

D

`-x/y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If x^p y^q = (x+y)^(p+q) , then( d^2y)/(d x^2 ) =..........

If y= x^(x^(x...)) , then show that dy/dx = frac{y^2}{x(1-log y)}

If sec((x+y)/(x-y))=a , prove that (dy)/(dx)=y/x .

If log(x+y) = log(xy) + p , where p is constant, then prove that dy/dx = frac{-y^2}{x^2}

If (x^y)(y^x)=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x^y=2^(x-y) , then dy/dx is