Home
Class 12
MATHS
If siny=xsin(a+y), prove that (dy)/(dx)=...

If `siny=xsin(a+y),` prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

A

`(sin^2(a+y))/(sin(a+y))`

B

`(sin^2(a+y))/(cos(a+2y))`

C

`(sin^2(a+y))/(sina)`

D

`(sin^2(a+y))/(cosa)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y=x sin (a+y) , then dy/dx =

If sin y = x sin(a+y), then show that dy/dx = frac{ sin^2 (a+y)}{sin a}

If sec((x+y)/(x-y))=a , prove that (dy)/(dx)=y/x .

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If sin(x+y)=log(x+y) then (dy)/(dx)=

If sin (x+y) +cos (x+y) =1,then (dy)/(dx)=

If (x^y)(y^x)=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If 3sin(x y)+4cos(x y)=5,t h e n(dy)/(dx)= (a) -y/x (b) (3sin(x y)+4cos(x y))/(3cos(x y)-4sin(x y)) (c) (3cos(x y)+4sin(x y))/(4cos(x y)-3sin(x y)) (d) (sin^2(a+y))/(sina)