Home
Class 12
MATHS
If x = log (1 + t^(2)) " and " y = t - t...

If `x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx ` is equal to

A

`1/2 (e^x-1)^(1//2)`

B

`e^x`

C

`e^x -1`

D

`x-y`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^-1((1+x)/(1-x)) , then dy/dx is equal to

Solve the following: If x = log (1+ t^2), y= t- tan^(-1) t , then show that dy/dx = (frac{sqrt (e^x -1)}{2})

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=f(t) and y=g(t) , then (d^2y)/(dx^2) is equal to

If x=a(t-sint), y=a(1-cost) , then (dy)/(dx) is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

If x=(e^t+e^(-t))/2 and y=(e^t-e^(-t))/2 , then dy/dx=

If cos x =1/sqrt(1+t^(2)) , and sin y = t/sqrt(1+t^(2)) , then (dy)/(dx) =