Home
Class 12
MATHS
If x=sint and y=sinp t , prove that (1-x...

If `x=sint` and `y=sinp t ,` prove that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.`

A

0

B

1

C

-1

D

`sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=costheta, y=sin5theta then (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=

If x= cos t, y= e^mt show that (1- x^2 ) ( d^2 y)/(d x^2 ) - x (dy/dx) - m^2 y = 0

If y=(x+sqrt(1+x^2))^n then (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)

If y= (sin^(-1) x)^2 , then (1-x^2) (d^2 y)/(dx^2) - x (dy/dx) = ..........

If e^y\ (x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y= cos (m sin^(-1) x), show that (1- x^2 )( d^2 y)/(d x^2 ) - x(dy/dx) + m^2 y = 0

If y= cos(m cos^(-1) x), then show that (1- x^2 ) ( d^2 y)/(d x^2 ) - x(dy/dx) + m^2 y =0

If y= sin(m cos^(-1) x), then show that (1- x^2 )( d^2 y)/(d x^2 ) - x dy/dx + m^2 y =0

If y= e^(m tan^ (-1) x) show that (1+x^2) (d^2 y)/(dx^2) + (2x-m) (dy/dx) = 0