Home
Class 12
MATHS
Let g(x) be the inverse of the function ...

Let `g(x)` be the inverse of the function `f(x),` and `f'(x)=1/(1+x^3)` then `g'(x)` equals

A

(a) `1/(1+[g(x)]^3)`

B

(b) `1/(1+[f(x)]^3)`

C

(c) `1+[g(x)]^3`

D

(d) `1+[f(x)]^3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)) , then g'(x) is

If g (y) is inverse of function f :R to R given by f (x)=x+3, then g (y)=

If f(x) = 1/(1-x) , then f(f(f(x))) is equal to

If g is the inverse function of f and f'(x)= frac{1}{1+x^7} , then the value of g'(x)........ A) 1+ x^7 B) frac{1}{1+[g(x)]^7} C) 1+[g(x)]^7 D) 7x^6