Home
Class 12
MATHS
If x= a(t-(1/t)), y=a(t+(1/t)), then sho...

If `x= a(t-(1/t)), y=a(t+(1/t))`, then show that `dy/dx = x/y`

A

`y/x`

B

`(-y)/x`

C

`x/y`

D

`(-x)/y`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= a(t-1/t), y=a(t+1/t) , then dy/dx =........ A) x/y B) y/x C) -x/y D) -y/x

Solve the following: If x = log (1+ t^2), y= t- tan^(-1) t , then show that dy/dx = (frac{sqrt (e^x -1)}{2})

Solve the following: If x = a cos^(3) t, y= a sin^(3) t, then show that dy/dx = - (frac{y}{x})^(1/3)

Find dy/dx if: x= a(t-(1/t)), y=a(t+(1/t))

If x= sqrt ( a^( sin^(-1) t) ) and y= sqrt ( a^( cos^(-1) t) ), then show that dy/dx = -(y/x)

Solve the following: If x = 2 cos^(4) (t+3), y= 3 sin^(4) (t+3), then show that dy/dx = - sqrt (frac{3y}{2x})

If x= afrac{1-t^2}{1+t^2}, y= 2bt/(1+t^2) , show that dy/dx = -(b^2 y)/(a^2x)

If x^2 + y^2 = t -(1/t) and x^4 + y^4 = t^2 + (1/ t^2) , then show that x^3 y (dy/dx) = 1