Home
Class 12
MATHS
If y=f((3x+pi)/(5x+4)) and f'(x)=tan^2 x...

If `y=f((3x+pi)/(5x+4))` and `f'(x)=tan^2 x`, then `(dy)/(dx)` at `x=0` is

A

`(12+5pi)/16`

B

`(12-5pi)/16`

C

`(5+12pi)/16`

D

`(5-12pi)/16`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=f((2x+3)/(3-2x)) and f(x)=sin(logx) , then (dy)/(dx)=

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to

If y=f(x^3),z=g(x^5),f'(x)=tanx and g'(x)=sec x , then (dy)/(dz) =

If x^2y^3=(x+y)^5 , then (dy)/(dx) is

If y sec x+ tan x +x^2 y=0 , then (dy)/(dx) =

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to

If y = f(x^(2) + 2) " and " f'(3) = 5 , " then" dy/dx " at x " = 1 is

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is