Home
Class 12
MATHS
If p=a^2cos^2theta+b^2 sin^2 theta, wher...

If `p=a^2cos^2theta+b^2 sin^2 theta`, where `a^2+b^2=c^2` ,
then `4p+(d^2p)/(d theta^2)` is equal to

A

`c^2`

B

`2c^2`

C

`4c^2`

D

`8c^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

2cos^2theta-2sin^2theta=1 then theta =

If sin theta + sin^(2) theta=1 " then " cos^(2) theta+ cos^(4) theta is equal to

If x= a(cos theta + sin theta ), y= a(sin theta + cos theta ), then [( d^2 y)/(d x^2 ) ] at theta = pi /4 ............. A) 0 B) 1 C) -1 D) 1/sqrt 2

If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

if A=( theta :2 cos^(2)theta + sin theta le 2)and B= {theta :(pi)/(2) le theta le (3pi)/(2)} then A n B is equal to

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If (a+b)^2/(4ab)=sin^2theta , then

If x= a cos theta , y= b sin theta , show that ( d^2 y)/(d x^2 ) = - b^4 /a^2y^3

If cos theta + sin theta = sqrt2 cos theta " then" cos theta - sin theta is equal to