Home
Class 11
MATHS
Prove that .^(7)C(2)+^(7)C(3)=^(8)C(3)...

Prove that
`.^(7)C_(2)+^(7)C_(3)=^(8)C_(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

.^(n) C_(2) + .^(7)C_(3) = .^(8) C_(3)

Prove that (.^(n)C_(0))/(1)+(.^(n)C_(2))/(3)+(.^(n)C_(4))/(5)+(.^(n)C_(6))/(7)+"....."+= (2^(n))/(n+1)

If ^(8)C_(r)-^(7)C_(3)^(7)C_(2)f in dr

Verify that 2 ""^(7)C_(4)=""^(8)C_(4) .

Find the value of .^(7)C_(4)-.^(6)C_(4)-.^(5)C_(3)-.^(4)C_(2) .

The value of (.^(7)C_(0)+.^(7)C_(1))+(.^(7)C_(1)+.^(7)C_(2))+(.^(7)C_(6)+.^(7)C_(7)) is (A)2^(7)-1(B)2^(8)-2(C)2^(8)-1(D)2^(8)

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

Prove that (a^(8)+b^(8)+c^(8))/(a^(3)b^(3)c^(3))>(1)/(a)+(1)/(b)+(1)/(c)

Prove that: .^(n-1)C_3+^(n-1)C_4gt^nC_3, if ngt7

Find .^(n)C_(3) , if .^(n)C_(7)=.^(n)C_(4) .