Home
Class 12
MATHS
Find the value of cot^(-1) [(sqrt(1-sinx...

Find the value of `cot^(-1) [(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} , where (pi)/2ltxltpi , is

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

Find (dy)/(dx) of y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

Show that : cot^(-1) [(sqrt(1 + sinx) + sqrt(1 - sinx))/(sqrt(1 + sinx) - sqrt(1 - sinx))]= x/2

If (5pi)/2

If (5pi)/(2)ltxlt3pi , then the value of the expression (sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)) is