Home
Class 11
MATHS
lim(n rarr oo)2^(n)sin(a)/(2^(n))...

`lim_(n rarr oo)2^(n)sin(a)/(2^(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(n rarr oo)2^(n-1)sin((a)/(2^(n)))

Evaluate the following limit: quad sin((a)/(2^(n)))(lim)_(n rarr oo)(sin((a)/(2^(n))))/(sin((b)/(2^(n))))

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(n^(2))/(2^(n))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

The value of lim_(n rarr oo)((1)/(2^(n))) is

lim_(n rarr oo) ((sin(n))/(n^(2))+log((en+1)/(n+e))) ^(n) is equal to

Evaluate: lim_(n rarr oo)(n^(p)sin^(2)(n!))/(n+1)

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

Let f(x)=lim_(n rarr oo)(sin x)^(2n)