Home
Class 11
MATHS
lim(x->pi/2)(secx-tanx)...

`lim_(x->pi/2)(secx-tanx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit (lim)_(x->pi/2)(sin x)^(tanx)

Evaluate: ("Lim")_(x->pi//2)(secx)^(cotx)

Which of the following are true? lim_(x->pi/2+) tan x=oo , lim_(x->pi/2-) tanx=oo , lim_(x->pi/2) tanx=oo , lim_(x->pi/2) tanx=does not exist

Evaluate the following one sided limit: ("lim")_(x->pi//2^+)secx

Evaluate: (i)lim_(xrarr(pi)/(2))(sec x-tanx)" "(ii)lim_(xrarr0)((cosecx-cotx))/(x)

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

Evaluate ("Lim")_(x->pi/4)(2-tanx)^(1/(ln(tanx))) using Lhospitals Rule

The value of lim_(xrarr0)(secx+tanx)^(1)/(x) is equal to

lim_(xrarr pi/2) ((1-tanx//2)(1-sinx))/((1-tanx//2)(pi-2x)^3)

Evaluate lim_(xto pi//4) (2-tanx)^(1//1n(tanx))