Home
Class 12
MATHS
Let cos((2pi)/7)+i sin((2pi)/7) and al...

Let `cos((2pi)/7)+i sin((2pi)/7) and alpha= w + w^2 +w^4 and beta=w^3 + w^5 + w^6`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega = "cos"(pi)/(n) + "i sin" (pi)/(n) , then value of 1 + omega + omega^(2) +...+omega^(n-1) is

Let omega be the complex number cos((2 pi)/(3))+i sin((2 pi)/(3))* Then the number of distinct complex cos numbers z satisfying Delta=det[[omega,z+omega^(2),1omega,z+omega^(2),1omega^(2),1,z+omega]]=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

If z=6(cos(2(pi)/(7))+i sin(2(pi)/(7))) and w=3(cos(5(pi)/(7))+i sin(5(pi)/(7))) then what is the value of (z)/(w)

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n-1) is :