Home
Class 11
MATHS
(dy)/(dx)=(e^(2x)+1)/(e^(x))...

`(dy)/(dx)=(e^(2x)+1)/(e^(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "y=logsqrt((1+cos^(2)x)/(1-e^(2x)))", show that "(dy)/(dx)=(e^(2x))/(1-e^(2x))-(sinxcosx)/((1+cos^(2)x)).

(dy)/(dx)=(x+e^(2x))/(y)

If y=sqrt((1+e^(x))/(1-e^(x))), show that (dy)/(dx)=(e^(x))/((1-e^(x))sqrt(1-e^(2)x))

Solve: (dy)/(dx)=(1)/(sin^(4)x+cos^(4)x) (ii) (dy)/(dx)=(3e^(2x)+3e^(4x))/(e^(x)+e^(-x))

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

(dy)/(dx)=(x^2+e^(x))/(y)

If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)) , prove that : dy/dx=-(2e^(2x))/(1+e^(4x)) .

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

(dy)/(dx)=(e^(y))/(x^(2))-(1)/(x)