Home
Class 11
MATHS
If y=1 x/(1!)+x^2/(2!)+x^3/(3!)+......, ...

If `y=1 x/(1!)+x^2/(2!)+x^3/(3!)+......,` then `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, is (dy)/(dx)=y+1 b.y-1 c.y d.y^(2)

If y= 1+x+ (x^(2)) /(2!) +(x^(3))/( 3!) +......infty ,then (dy)/(dx) =

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+, show that (dy)/(dx)=y

If y = (1)/( (x^(2) +3)) , then (dy)/(dx) =

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If y=(x^((1)/(3))-x^(-(1)/(3))) then (dy)/(dx) is

" If (x^(2))/(a^(2))-(y^(2))/(b^(3))=1 then " (dy)/(dx)=