Home
Class 12
MATHS
If y=e^(x-y) then show that (dy)/(dx) = ...

If `y=e^(x-y)` then show that `(dy)/(dx) = y/(1+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x/(x+4) then show that x (dy)/(dx) = y(1-y)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If Y = kx, then show that (dy)/(dx) = (y)/(x)

"If "y=e^(x+y)" ,show that "(dy)/(dx)=(y)/(1-y)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

if e^(-y)y=x then prove that (dy)/(dx)=(y)/(x(1-y))

If y = e^(ax) Show that x(dy)/(dx) = y log y .

If y=5+ye^(x) show that (dy)/(dx)=(y-5)/(1-e^(x))