Home
Class 12
MATHS
Prove that cos((2pi)/7) cos((4pi)/7) cos...

Prove that `cos((2pi)/7) cos((4pi)/7) cos((8pi)/7) =1/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that: cos(pi)/(7)cos(2 pi)/(7)cos(4 pi)/(7)=-(1)/(8)

Prove that 4cos(2 pi)/(7)*cos(pi)/(7)-1=2cos(2 pi)/(7)

cos.(2pi)/(7)+cos.(4pi)/(7)+cos.(6pi)/(7)

prove that cos2(pi)/(7)+cos4(pi)/(7)+cos6(pi)/(7)=-(1)/(2)

Prove that cos((pi)/(8))+cos((3 pi)/(8))+cos((5 pi)/(8))+cos((7 pi)/(8))=0

Show that: sin((2pi)/7)+ sin ((4pi)/7) + sin( (8pi)/7) = sqrt7/2 .

Prove that cos(2 pi)/(15)cos(4 pi)/(15)cos(8 pi)/(15)cos(14 pi)/(15)=(1)/(16)

Prove that :(cos pi)/(7)(cos(2 pi))/(7)(cos(3 pi))/(7)(cos(4 pi))/(7)=(1)/(8)