Home
Class 12
MATHS
Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2...

Prove that : `sin^(-1)x+cos^(-1)x=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

If -1<=x,y<=1 such that sin^(-1)x+sin^(-1)y=(pi)/(2), find the value of cos^(-1)x+cos^(-1)y

If sin ^ (- 1) x + sin ^ (- 1) y = (pi) / (2), then prove that sin ^ (- 1) x = cos ^ (- 1) y

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)