Home
Class 12
MATHS
((1+isinpi/8+cospi/8)/(1-isinpi/8+cospi/...

`((1+isinpi/8+cospi/8)/(1-isinpi/8+cospi/8))^(8)` equals

A

`2^(8)`

B

0

C

`-1`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : Single Option Correct Type (2 Marks))|15 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : One or More than One Option Correct Type (2 Marks) )|10 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos

Similar Questions

Explore conceptually related problems

(sinpi//8+icospi//8)^(8)/(sinpi//8-icospi//8)^(8)=

" **4.Show that one value of "((1+sin(pi)/(8)+i cos(pi)/(8))/(1+sin(pi)/(8)-i cos(pi)/(8)))^((8)/(3))=-1

The expression [(1+sin((pi)/(8))+i cos((pi)/(8)))/(1+sin((pi)/(8))-i cos((pi)/(8)))]^(8)

{(1+cospi//8+isinipi//8)/(1+cospi//8-isinpi//8)}^(8)=

If z=cospi/4+isinpi/6 then

Evaluate: (1+cos(pi/8))(1+cos(3pi/8))(1+cos(5pi/8))(1+cos (7pi/8))

Prove that (1 + cos(pi/8))(1 + cos(3pi/8))(1 + cos(5pi/8))(1 + cos(7pi/8)) = 1/8

Simplify: [(1+ (sin pi) / (8) + i (cos pi) / (8)) / (1+ (sin pi) / (8) -i (cos pi) / (8))] ^ ((1) / (2))

The polar form of the complex number (i^(25))^3 is (a) cos(pi/2)+isin(pi/2) (b) cospi+isinpi (c) cospi-isinpi (d) cos((3pi)/2)+isin((3pi)/2)

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to