Home
Class 12
MATHS
If (a(1)+ib(1))(a(2)+ib(2))….(a(n)+ib(n)...

If `(a_(1)+ib_(1))(a_(2)+ib_(2))….(a_(n)+ib_(n))=A+iB,` then `(a_(1)^(2)+b_(1)^(2))(a_(2)^(2)+b_(2)^(2))…..(a_(n)^(2)+b_(n)^(2))` is equal to

A

1

B

`A^(2)+B^(2)`

C

`A+B`

D

`1/(A^(2))+1/(B^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 1 : Single Option Correct Type (1 Mark) )|18 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Marks) )|5 Videos
  • COMPLEX NUMBERS

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : Single Option Correct Type (2 Marks))|15 Videos
  • CIRCLES

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More One Option Correct Type)|2 Videos
  • CONIC SECTIONS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : One or More than One Option Correct Type)|6 Videos

Similar Questions

Explore conceptually related problems

If quad (a_(1)+ib_(1))(a_(2)+ib_(2))....(a_(n)+ib_(n))=A+iB, then (a_(1)^(2)+b_(1)^(2))(a_(2)^(2)+b_(2)^(2))......(a_(n)^(2)+b_(n)^(2)) is equal to (A)1(B)(A^(2)+B^(2))(C)(A+B)(D)((1)/(A^(2))+(1)/(B^(2)))

If (a_(1)+ib_(1))(a_(2)+ib_(2))………………(a_(n)+ib_(n))=A+iB , then sum_(i=1)^(n) tan^(-1)(b_(i)/a_(i)) is equal to

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common rario r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

Given that (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . .(a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n)))=mpi+tan^(-1)((d)/(c)) .

Given that: (a_(1)+ib_(1))(a_(2)+ib_(2)) . . . (a_(n)+ib_(n))=c+id , show that: tan^(-1)((b_(1))/(a_(1)))+tan^(-1)((b_(2))/(a_(2)))+ . . .+tan^(-1)((b_(n))/(a_(n))) =mpi+tan^(-1)((d)/(c)) .

. If a_(1),a_(2),a_(3),...,a_(2n+1) are in AP then (a_(2n+1)+a_(1))+(a_(2n)+a_(2))+...+(a_(n+2)+a_(n)) is equal to

If f(x)=(a_(1)x+b_(1))^(2)+(a_(2)x+b_(2))^(2)+...+(a_(n)x+b_(n))^(2), then prove that (a_(1)b_(1)+a_(2)b_(2)+...+a_(n)b_(n))^(2)<=(a_(1)^(2)+a_(2)^(2)+...+a_(n)^(2))(b_(1)^(2)+b_(2)^(2)+...+b_(n)^(2))