Home
Class 12
MATHS
The values of gammaandmu for which the v...

The values of `gammaandmu` for which the vectors `a=2hat(i)+lamdahat(j)-hat(k)` is perpendicular to the vector `vec(b)=3hat(i)+hat(j)+muhat(k)` with `|vec(a)|=|vec(b)|` are

A

`lamda=(41)/(12),mu=(31)/(12)`

B

`lamda=(41)/(12),mu=-(31)/(12)`

C

`lamda=-(41)/(12),mu=(31)/(12)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE previous Years Questions (Single Option Correct Type) (1 mark)|9 Videos
  • VECTOR ALGEBRA

    MTG-WBJEE|Exercise WB JEE WORKOUT (Single Option Correct Type) (2 Mark)|15 Videos
  • TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions (CATEGORY 2 : Single Option Correct Type (2 Mark))|3 Videos

Similar Questions

Explore conceptually related problems

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find a vector perpendicular to vector vec(A)=(hat(i)+2hat(j)-3hat(k)) as well as vec(B)=(hat(i)+hat(j)-hat(k))

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

Find a vector whose length is 3 and which is perpendicular to the vector vec a=3hat i+hat j-4hat k and vec b=6hat i+5hat j-2hat k

Let a vector vec(a) be coplanar with vectors vec(b) = 2hat(i) + hat(j) + hat(k) and vec(c) = hat(i) - hat(j) + hat(k) . If vec(a) is perpendicular to vec(d) = 3hat(i) + 2hat(j) + 6hat(k) , and |vec(a)| = sqrt(10) . Then a possible value of [[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]] is equal to :

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .