Home
Class 13
MATHS
The value of int(-1)^(1)x^(2)e^([x^(3)])...

The value of `int_(-1)^(1)x^(2)e^([x^(3)])dx`, where [t] denotes the greatest integer `le t`, is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(-1)^(1)(x-[x])dx , (where [.] denotes greatest integer function)is

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(15)[x]^(3)dx equals, where [. ] denote the greatest integer function