Home
Class 12
MATHS
Prove that int (-2)^2|1-x^2|dx=4...

Prove that `int _(-2)^2|1-x^2|dx=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(-2)^(2)|1-x^(2)|dx=4

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Prove that int_2^3 x/(x^2+1) dx=log sqrt2

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Prove that int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

prove that int(x^(2))/((x^(2)+1)(x^(2)+4))dx=-(1)/(3)tan^(-1)x+(2)/(3)tan^(-1)((x)/(2))+