Home
Class 11
MATHS
Prove that tan^2frac(pi)(4)+sin^2frac(...

Prove that
`tan^2frac(pi)(4)+sin^2frac(pi)(6)-cos^2frac(pi)(3)=1`

Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    MAXIMUM PUBLICATION|Exercise EXAMPLE|96 Videos

Similar Questions

Explore conceptually related problems

prove that 3sin frac (pi)(6)secfrac(pi)(3)-4sinfrac(5pi)(6)cotfrac(pi)(4)=1

Prove that sin^-1frac(4)(5)+sin^-1frac(5)(13)=sin^-1frac(63)(65)

show that sin^-1frac(3)(5)-sin^-1frac(8)(17)=cos^-1frac(84)(85)

Prove that 2 sin^-1(frac(3)(5))=tan^-1(frac(24)(7))

show that sin^-1(frac(3)(5))-sin^-1(frac(8)(17))=cos^-1(frac(84)(85))

Prove that "sin"^(2)(pi)/(18)+"sin"^(2)(pi)/(9)+"sin"^(2)(7pi)/(18)+"sin"^(2)(4pi)/(9)=2 .

Show that tan^-1frac(1)(5)+tan^-1frac(1)(7)+tan^-1frac(1)(3)+tan^-1frac(1)(8)=pi/4

prove the following tan^(-1)frac(63)(16)=sin^(-1)frac(5)(13)+cos^(-1)frac(3)(5)

Prove 2tan^-1frac(1)(2)+tan^-1frac(1)(7)=tan^-1frac(31)(17)

Prove that 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2