Home
Class 11
MATHS
^nC(n-1)=…....

`^nC_(n-1)`=….

A

n-1

B

n

C

0

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 20

    MAXIMUM PUBLICATION|Exercise EXAMPLE|39 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    MAXIMUM PUBLICATION|Exercise EXAMPLE|47 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Prove that (""^nC_r)/(""^nC_(r-1))=(n-r+1)/r

Let c_r denote the binomial coefficient "^nC_r Hence, show that C_1/C_0+2C_2/C_1+3.C_3/C_2+...+n.C_n/C_(n-1)=(n(n+1))/2

Prove that ""^nC_r+4^nC_(r-1)+6^(n)C_(r-2)+4^nC_(r-3)+^nC_(r-4)=^(n+4)C_r

prove the result ^(n+1)C_r=^nC_(r-1)+^nC_r

Prove that ^"" nC_r=^nC_(n-r)

^nC_8=^nC_8 , n=…….

Given that 1/(r+1)""^nC_r=1/(n+1)"'^(n+1)C_(r+1) Prove that 2""^10C_0+2^2/2""^10C_1+2^3/3""^10C_2+.....+2^11/11""^10C_10=(3^11-1)/11

Prove that ""^(n+1)C_(r+1)=(n+1)/(r+1)"^nC_r

Given that ""^nC_r="^nC_(n-r) or C_r=C_(n-r) Prove that aC_0+(a+b)C_1+...+(a+nb)C_n=(2a+nb)2^(n-1) Hence, prove that C_0+5C_1+9C_2+...+(4n+1)C_n=(4n+2)2^(n-1)