Home
Class 11
MATHS
Prove that ^(61)C(57) - ^(60)C(56) = ^(6...

Prove that `^(61)C_(57) - ^(60)C_(56) = ^(60)C_3`

Promotional Banner

Topper's Solved these Questions

  • MODEL PAPER 20

    MAXIMUM PUBLICATION|Exercise EXAMPLE|39 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    MAXIMUM PUBLICATION|Exercise EXAMPLE|47 Videos

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_(0)""^(n)C_(0)-^(n+1)C_(1) ""^(n)C_(1)+^(n+2)C_(2)""^(n)C_(2)....=(-1)^(n)

Prove that (C_(1))/(2)+(C_(3))/(4) +(C_(5))/(6)+….=2^(n)/(n+1) where C_(r) =^(n)C_(r)

If ""^(n)C_(2) + ""^(n)C_(3) = ""^(6)C_(3) and ""^(n)C_(x) = ""^(n)C_(3), x != 3 , then the value of x is

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

If (1+x)^(n) = overset(n)underset(r=0)Sigma C_(r)x^(r ) , then prove that C_(1)+2C_(2)+3C_(3)+…..+nC_(n)=n2^(n-1) .

Prove that (""^(n)C_(0))/(1)+(""^(n)C_(2))/(3)+(""^(n)C_(4))/(5)+(""^(n)C_(6))/(7)+...=(2^(n))/(n+1)

Prove that C_0C_2+C_1C_3+…+C_(n-2)C_n=^(2n)C_(n-2)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)...(C_(n-1)+C_n)=(C_0C_1C_2...C_(n-1)(n+1)^n)/(n!)

Prove that C_0+C_2/3+C_4/5+...=(2^n)/(n+1)

Given that C_0+C_1x+C_2x^2+..+C_nx^n=(1+x)^n Prove that C_(1).2+C_(2).2^2+...+C_n.2^n=3^n-1