Home
Class 12
MATHS
Show that sum(k =0)^(n) C(k) *sin (kx) c...

Show that `sum_(k =0)^(n) C_(k) *sin (kx) cos (n-k) x = 2^(n-1)sin n x` where `C_(r )= ""^(n)C_(r )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(k=1)^(n-r ) ""^(n-k)C_(r )= ""^(n)C_( r+1) .

cos ^(3) x sin 2x= sum _(x=0) ^(n) a _(r) sin (rx) AA x in R, then

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=