Home
Class 12
MATHS
Prove that : Find the sum of the infinit...

Prove that : Find the sum of the infinite series
`1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo`

Text Solution

Verified by Experts

The correct Answer is:
`root(3)(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the infinite series 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+….

Find the sum of the infinite series 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+…..

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

Show that 1 + 2/3.1/2 + (2.5)/(3.6) (1/2)^2 + (2.5.8)/(3.6.9) (1/2)^3 + ….. = root(3)4

The sum of the series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4)((1)/(5))^(4)+... is

The sum of the series 1+ (2)/(3)((1)/(8)) + (2 xx 5 xx 8)/(3 xx 6 xx 9) ((1)/(8))^(3) +… is

Sum of the series (1)/(2)((1)/(2)+(1)/(3))-(1)/(4)((1)/(2^(2))+(1)/(3^(2)))+(1)/(6)((1)/(2^(3))+(1)/(3^(3)))-... is