Home
Class 12
MATHS
Find the value of sum(i=1)^n sum(i=1)^n ...

Find the value of `sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n k`

Text Solution

Verified by Experts

The correct Answer is:
`(n^(3)(n+1))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n 1

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Prove the following sum_(i=1)^(n) sum_(j=1)^(n) sum_(k=1)^(n) sum_(l=1)^(n) (1)=n^(4)

Find the value of sum_(1le i,)sum_(jle n)(1) .

Find the value of sum_(k=1)^(10){sin((2kpi)/(11))-i cos ((2kpi)/(11))}

sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1, is equal to

The value of cot(sum_(n=1)^(23)cot^(-1)(1+sum_(k=1)^(n)2k)) is

The standard deviation of n observation x_1 , x_2, x_3 .....,x_n is 2. If sum_(i=1)^(n) x_(i)^(2)=100 and sum_(i=1)^(n) x_(i) = 20 show the value of n are 5 and 20

If n is a positive integer and C_4 = ""^nC_r then find the value of sum_(x = 1)^n r^2 ((C_r)/(C_(r - 1)) )