Home
Class 12
MATHS
sum(1lei)sum(ltjle n)ij=((sum(i=1)^(n)i)...

`sum_(1lei)sum_(ltjle n)ij=((sum_(i=1)^(n)i)^(2)-(sum_(i=1)^(n)i^(2)))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`(n(n^(2)-1)(3n+2))/(24)`
Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(0ltilt)sum_(jlen)(C_(i)+C_(j))=(n)*2^(n)

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

sum_(n=1)^(oo)(1)/(2n(2n+1))=

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

Prove the following sum_(i=1)^(n) sum_(j=1)^(n) sum_(k=1)^(n) sum_(l=1)^(n) (1)=n^(4)

Lt_(ntooo)sum_(r=1)^(n)(1)/(sqrt(4n^(2)-r^(2)))=

Prove the following sum_(1le i) sum_(lt j le n) (i+j)=(n(n^(2)-1))/(2)