Home
Class 12
MATHS
sum(0ltilt)sum(jlen)(C(i)+C(j))=(n)*2^(n...

`sum_(0ltilt)sum_(jlen)(C_(i)+C_(j))=(n)*2^(n)`

Text Solution

Verified by Experts

The correct Answer is:
`n*2^(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(0lt=i)sum_(ltjlt=n) (C_i +C_j)= n.2^n

Prove the following sum_(r=0)^(n)sum_(s=0)^(n)(C_(r )*C_(s))=4^(n)

Prove that sum_(1lt=ilt) sum_(jlt=n)(i) = (n (n^2 - 1))/(6)

If (1+x)^(n)=sum_(r=0)^(n)""^(n)C_(r )x^(r ) and if sum_(r=0)^(n) (1)/(""^(n)C_(r ))=lambda , then show that sum_(0 leilen) sum_(0 le j len) ((i)/(""^(n)C_(i)) +(j)/(""^(n)C_(j)))=n(n+1)lambda

sum_(1lei)sum_(ltjle n)ij=((sum_(i=1)^(n)i)^(2)-(sum_(i=1)^(n)i^(2)))/(2)

sum_(n=0)^oo((2i)/(3))^n=

Prove the following sum_(1le i) sum_(lt j le n) (i+j)=(n(n^(2)-1))/(2)

sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1, is equal to

Prove the following sum_(i=1)^(n) sum_(j=1)^(n) sum_(k=1)^(n) sum_(l=1)^(n) (1)=n^(4)

sum_(n=0)^( oo) (-1)^(n) x^( n+1)=