Home
Class 11
MATHS
prove that |[a-b-c , 2a , 2a] , [2b , b-...

prove that `|[a-b-c , 2a , 2a] , [2b , b-c-a , 2b] , [2c , 2c , c-a-b]|=(a+b+c)^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]= (a+b+c)^3

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

det[[ prove that ,2aa-b-c,2a,2a2b,b-c-a,2b2c,2c,c-a-b]]=(a+b+c)^(3)

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(a-b)^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)