Home
Class 12
MATHS
Let f(x)=int(0)^x( (a-1)(t^2+t+1)^2-(a+1...

Let `f(x)=int_(0)^x( (a-1)(t^2+t+1)^2-(a+1)(t^4+t^2+1))dt` then find the total number of integral value of `a` for which `f'(x)=0` has no real root

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the total number of integral values of \( a \) for which the equation \( f'(x) = 0 \) has no real roots. ### Step 1: Find \( f'(x) \) Given: \[ f(x) = \int_{0}^{x} \left( (a-1)(t^2 + t + 1)^2 - (a+1)(t^4 + t^2 + 1) \right) dt \] Using the Fundamental Theorem of Calculus, we differentiate \( f(x) \): \[ f'(x) = (a-1)(x^2 + x + 1)^2 - (a+1)(x^4 + x^2 + 1) \] ### Step 2: Set \( f'(x) = 0 \) We need to solve: \[ (a-1)(x^2 + x + 1)^2 - (a+1)(x^4 + x^2 + 1) = 0 \] ### Step 3: Rearranging the equation Rearranging gives: \[ (a-1)(x^2 + x + 1)^2 = (a+1)(x^4 + x^2 + 1) \] ### Step 4: Analyze the quadratic form This is a quadratic equation in \( x \). For the quadratic equation \( Ax^2 + Bx + C = 0 \) to have no real roots, the discriminant must be less than zero: \[ D = B^2 - 4AC < 0 \] ### Step 5: Identify coefficients From our equation, we can identify: - \( A = a + 1 \) - \( B = -a \) - \( C = (a-1) - (a+1) = -2 \) ### Step 6: Calculate the discriminant The discriminant \( D \) is: \[ D = (-a)^2 - 4(a + 1)(-2) = a^2 + 8(a + 1) \] \[ D = a^2 + 8a + 8 \] ### Step 7: Set the discriminant less than zero We need: \[ a^2 + 8a + 8 < 0 \] ### Step 8: Find the roots of the quadratic To find the roots of \( a^2 + 8a + 8 = 0 \), we use the quadratic formula: \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{64 - 32}}{2} = \frac{-8 \pm \sqrt{32}}{2} = \frac{-8 \pm 4\sqrt{2}}{2} = -4 \pm 2\sqrt{2} \] ### Step 9: Determine the intervals The roots are: \[ a_1 = -4 - 2\sqrt{2}, \quad a_2 = -4 + 2\sqrt{2} \] ### Step 10: Analyze the intervals The quadratic opens upwards (since the coefficient of \( a^2 \) is positive). Thus, \( a^2 + 8a + 8 < 0 \) between the roots: \[ -4 - 2\sqrt{2} < a < -4 + 2\sqrt{2} \] ### Step 11: Find integral values of \( a \) Calculating the approximate values: - \( -4 - 2\sqrt{2} \approx -4 - 2(1.414) \approx -6.828 \) - \( -4 + 2\sqrt{2} \approx -4 + 2(1.414) \approx -1.172 \) Thus, the integral values of \( a \) in the interval \( (-6.828, -1.172) \) are: - \( -6, -5, -4, -3, -2 \) ### Conclusion The total number of integral values of \( a \) for which \( f'(x) = 0 \) has no real roots is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = int _(0)^(x) ((a -1) (t ^(2)+t+1)^(2) -(a+1)(t^(4)+t ^(2) +1)) dt. Then the total numbr of integral values of 'a' for which f'(x)=0 has no rel roots is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f(x)=int_(0)^(1)|x-t|dt, then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx

f(x)=int_(0)^(x^(2))((sin^(-1)sqrt(t))^(2))/(sqrt(t))dt

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)cos((t^(2)+2t+1)/(5))dt0>x>2 then f(x)