Home
Class 12
MATHS
A=[(i,-i),(-i,i)] , A^8[(x),(y)]=[(8),(6...

`A=[(i,-i),(-i,i)] , A^8[(x),(y)]=[(8),(64)]` has

A

unique solutions

B

no solutions

C

Infinite solutions

D

2 solutions

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and the matrix equation \( A^8 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 64 \end{pmatrix} \). ### Step 1: Define the Matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} i & -i \\ -i & i \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^8 \), we first compute \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} i & -i \\ -i & i \end{pmatrix} \cdot \begin{pmatrix} i & -i \\ -i & i \end{pmatrix} \] Calculating the elements: - First row, first column: \( i \cdot i + (-i)(-i) = -1 + 1 = 0 \) - First row, second column: \( i \cdot (-i) + (-i)(i) = -1 - 1 = -2 \) - Second row, first column: \( -i \cdot i + i(-i) = -1 + 1 = 0 \) - Second row, second column: \( -i \cdot (-i) + i \cdot i = 1 - 1 = 0 \) Thus, \[ A^2 = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] ### Step 3: Calculate \( A^4 \) Next, we compute \( A^4 \): \[ A^4 = A^2 \cdot A^2 = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 0 \cdot 0 + (-2)(-2) = 4 \) - First row, second column: \( 0 \cdot (-2) + (-2)(0) = 0 \) - Second row, first column: \( -2 \cdot 0 + 0 \cdot (-2) = 0 \) - Second row, second column: \( -2 \cdot (-2) + 0 \cdot 0 = 4 \) Thus, \[ A^4 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 4I \] where \( I \) is the identity matrix. ### Step 4: Calculate \( A^8 \) Now we can compute \( A^8 \): \[ A^8 = A^4 \cdot A^4 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} = 16I \] ### Step 5: Set Up the Equation Now we substitute \( A^8 \) into the equation: \[ 16I \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 64 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 16x \\ 16y \end{pmatrix} = \begin{pmatrix} 8 \\ 64 \end{pmatrix} \] ### Step 6: Solve for \( x \) and \( y \) From the equations: 1. \( 16x = 8 \) → \( x = \frac{8}{16} = \frac{1}{2} \) 2. \( 16y = 64 \) → \( y = \frac{64}{16} = 4 \) ### Step 7: Conclusion The solution is unique, as we have found specific values for \( x \) and \( y \). Therefore, the answer is that there is a unique solution.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [{:(i, -i), (-i , i):}], i sqrt (-i) Then, the system of linear equations A ^(8) [{:(x), (y):}]= [{:(8), (64):}] has:

If A=([i,-i],[-i,i]) , B=([1,-1],[-1,1]) , A^(8)=KB and K=a^(b) then a+b=

If A=[[i,-i],[-i, i ]] and B=[[1,-1],[-1,1]] ,then A^( 8 ) equals,(where i=sqrt(-1) ) 4B 128 B -128 B -64 B

(-i)(2i)(-(i)/(8))^(3)

(1+i)^(8)+(1-i)^(8)=?

Without expanding the determinant at any stage, find K in R such that |{:(4i,8+i,4+3i),(-8+i,16i,i),(-4+Ki,i,8i):}| has purely imaginary value .

(-i)(2i)(-(1)/(8)i)^(3)