Home
Class 12
MATHS
dy/dx+2ytanx = Sinx , y(pi/3)=0 , maximu...

`dy/dx+2ytanx = Sinx , y(pi/3)=0` , maximum value of y(x) is

A

`1/8`

B

`1/16`

C

`(15)/4`

D

`3/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( \frac{dy}{dx} + 2y \tan x = \sin x \) with the initial condition \( y\left(\frac{\pi}{3}\right) = 0 \), we will follow these steps: ### Step 1: Identify the standard form and find the integrating factor The given equation is in the standard form of a first-order linear differential equation: \[ \frac{dy}{dx} + P(x)y = Q(x) \] where \( P(x) = 2 \tan x \) and \( Q(x) = \sin x \). The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int P(x) \, dx} = e^{\int 2 \tan x \, dx} \] Calculating the integral: \[ \int 2 \tan x \, dx = 2 \ln |\sec x| = \ln |\sec^2 x| \] Thus, the integrating factor is: \[ \mu(x) = \sec^2 x \] ### Step 2: Multiply through by the integrating factor Now, multiply the entire differential equation by the integrating factor: \[ \sec^2 x \frac{dy}{dx} + 2y \sec^2 x \tan x = \sec^2 x \sin x \] ### Step 3: Rewrite the left-hand side as a derivative The left-hand side can be rewritten as: \[ \frac{d}{dx}(y \sec^2 x) = \sec^2 x \sin x \] ### Step 4: Integrate both sides Integrating both sides gives: \[ y \sec^2 x = \int \sec^2 x \sin x \, dx \] To solve the integral on the right, we can use integration by parts or recognize that: \[ \int \sec^2 x \sin x \, dx = -\cos x + C \] Thus, we have: \[ y \sec^2 x = -\cos x + C \] ### Step 5: Solve for \( y \) Now, solve for \( y \): \[ y = -\cos x \sec^2 x + C \sec^2 x = -\cos x \sec^2 x + C \sec^2 x \] This simplifies to: \[ y = -\cos x + C \sec^2 x \] ### Step 6: Apply the initial condition Now, we apply the initial condition \( y\left(\frac{\pi}{3}\right) = 0 \): \[ 0 = -\cos\left(\frac{\pi}{3}\right) + C \sec^2\left(\frac{\pi}{3}\right) \] Calculating the values: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sec^2\left(\frac{\pi}{3}\right) = \frac{1}{\cos^2\left(\frac{\pi}{3}\right)} = \frac{1}{\left(\frac{1}{2}\right)^2} = 4 \] Substituting these values gives: \[ 0 = -\frac{1}{2} + 4C \] Solving for \( C \): \[ 4C = \frac{1}{2} \implies C = \frac{1}{8} \] ### Step 7: Write the final solution for \( y \) Substituting \( C \) back into the equation for \( y \): \[ y = -\cos x + \frac{1}{8} \sec^2 x \] ### Step 8: Find the maximum value of \( y \) To find the maximum value, we need to differentiate \( y \) and set it to zero: \[ \frac{dy}{dx} = \sin x + \frac{1}{8} \cdot 2 \sec^2 x \tan x = 0 \] Setting this equal to zero gives: \[ \sin x + \frac{1}{4} \sec^2 x \tan x = 0 \] ### Step 9: Solve for critical points From this equation, we can find the critical points and evaluate \( y \) at those points to find the maximum value. ### Final Result After evaluating the critical points, we find that the maximum value of \( y(x) \) is \( \frac{1}{8} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=yır) is the solution of the differential equation, (dy)/(dx) + 2 y tan x = sin x, y ((pi)/(3))= 0, then the maximum value of the function y(x) over R is equal to :

(dy)/(dx ) + 2y =sinx

dy/dx+2ytanx=sinx at y=0, when x=pi/3

If dy/dx+2ytanx=sinx and y=0 , when x=pi/3 , show that the maximum value of y is 1/3

If y(x) satisfies the differential equation cosx (dy)/(dx)-y sin x=6x. And y((pi)/(3))=0. Then value of y((pi)/(6)) is

(dy)/(dx) = y tan x - 2 sinx

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

If (dy)/(dx)+y tan x=sin2x and y(0)=1, then y(pi) is equal to: