Home
Class 12
MATHS
81^(cos^2x)+81^(sin^2x)=30 . then no. of...

`81^(cos^2x)+81^(sin^2x)=30` . then no. of solutions in `x in (o,pi)`

A

0

B

2

C

8

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 81^{\cos^2 x} + 81^{\sin^2 x} = 30 \) and find the number of solutions for \( x \) in the interval \( (0, \pi) \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 81^{\cos^2 x} + 81^{\sin^2 x} = 30 \] Since \( 81 = 3^4 \), we can rewrite the equation as: \[ (3^4)^{\cos^2 x} + (3^4)^{\sin^2 x} = 30 \] This simplifies to: \[ 3^{4\cos^2 x} + 3^{4\sin^2 x} = 30 \] ### Step 2: Introduce a substitution Let \( t = 3^{4\sin^2 x} \). Then, we have: \[ 3^{4\cos^2 x} = \frac{81}{t} \] Substituting this into our equation gives: \[ \frac{81}{t} + t = 30 \] ### Step 3: Multiply through by \( t \) To eliminate the fraction, multiply the entire equation by \( t \): \[ 81 + t^2 = 30t \] Rearranging this gives us a standard quadratic form: \[ t^2 - 30t + 81 = 0 \] ### Step 4: Solve the quadratic equation Now we can solve for \( t \) using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -30, c = 81 \): \[ t = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 1 \cdot 81}}{2 \cdot 1} \] Calculating the discriminant: \[ t = \frac{30 \pm \sqrt{900 - 324}}{2} \] \[ t = \frac{30 \pm \sqrt{576}}{2} \] \[ t = \frac{30 \pm 24}{2} \] This gives us two solutions: \[ t_1 = \frac{54}{2} = 27, \quad t_2 = \frac{6}{2} = 3 \] ### Step 5: Back substitute for \( \sin^2 x \) Recall that \( t = 3^{4\sin^2 x} \). Thus, we have two cases: 1. \( 3^{4\sin^2 x} = 27 \) 2. \( 3^{4\sin^2 x} = 3 \) #### Case 1: \( 3^{4\sin^2 x} = 27 \) Taking logarithm base 3: \[ 4\sin^2 x = 3 \implies \sin^2 x = \frac{3}{4} \implies \sin x = \pm \frac{\sqrt{3}}{2} \] The solutions for \( x \) in \( (0, \pi) \) are: - \( x = \frac{\pi}{3} \) (for \( \sin x = \frac{\sqrt{3}}{2} \)) - \( x = \frac{2\pi}{3} \) (for \( \sin x = -\frac{\sqrt{3}}{2} \) is not valid in this interval) #### Case 2: \( 3^{4\sin^2 x} = 3 \) Taking logarithm base 3: \[ 4\sin^2 x = 1 \implies \sin^2 x = \frac{1}{4} \implies \sin x = \pm \frac{1}{2} \] The solutions for \( x \) in \( (0, \pi) \) are: - \( x = \frac{\pi}{6} \) (for \( \sin x = \frac{1}{2} \)) - \( x = \frac{5\pi}{6} \) (for \( \sin x = -\frac{1}{2} \) is not valid in this interval) ### Step 6: Count the valid solutions From both cases, the valid solutions in the interval \( (0, \pi) \) are: - \( x = \frac{\pi}{3} \) - \( x = \frac{\pi}{6} \) - \( x = \frac{5\pi}{6} \) Thus, we have a total of **three valid solutions**. ### Final Answer: The number of solutions in \( x \) in the interval \( (0, \pi) \) is **3**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

32^(tan^2x)+32^(Sec^2x)=81 . Find number of solution if 0 le x le pi/4 .

Number of solution 2^(cos x)=|sin x| in [0,2 pi] is

If 81^(sin^2 x) + 81^(cos^2 x) = 30 , where (pi//2) le x le pi , then x =

If x!=(n pi)/(2),n in I and (cos x)^(sin)(2x-3sin x+2)=1, then find the general solution of x.

If x in[0,2 pi] then the number of solution of the equation 81^(sin^(2)x)+81^(cos^(2)x)=30

The number of roots of the equation, (81) ^( sin ^(2)x) + (81) ^( cos ^(2)x) x = 30 in the interval [0, pi ] is equal to :