Home
Class 12
MATHS
alpha hati + beta hatj is obtained by ro...

`alpha hati + beta hatj` is obtained by rotating `sqrt3hati+hatj` by `45^@` in counter direction about only `45^@`. Find area of `Delta` made by `(0,0), (0,beta)and (alpha , beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to follow the geometric transformations and calculations outlined in the video transcript. Here’s the detailed solution: ### Step 1: Understand the Rotation We start with the vector \( \sqrt{3} \hat{i} + \hat{j} \). We need to rotate this vector by \( 45^\circ \) in the counterclockwise direction. ### Step 2: Use Rotation Matrix The rotation of a vector \( \begin{pmatrix} x \\ y \end{pmatrix} \) by an angle \( \theta \) can be done using the rotation matrix: \[ R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] For \( \theta = 45^\circ \): \[ R(45^\circ) = \begin{pmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] ### Step 3: Apply the Rotation Now, we apply this rotation matrix to the vector \( \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \): \[ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = R(45^\circ) \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \sqrt{3} - \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \sqrt{3} + \frac{1}{\sqrt{2}} \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3} - 1}{\sqrt{2}} \\ \frac{\sqrt{3} + 1}{\sqrt{2}} \end{pmatrix} \] ### Step 4: Calculate Area of Triangle The area \( A \) of the triangle formed by the points \( (0, 0) \), \( (0, \beta) \), and \( (\alpha, \beta) \) can be calculated using the formula: \[ A = \frac{1}{2} \times \text{base} \times \text{height} \] Here, the base is \( \alpha \) and the height is \( \beta \): \[ A = \frac{1}{2} \times \alpha \times \beta \] ### Step 5: Substitute Values of \( \alpha \) and \( \beta \) Substituting the values of \( \alpha \) and \( \beta \): \[ A = \frac{1}{2} \times \frac{\sqrt{3} - 1}{\sqrt{2}} \times \frac{\sqrt{3} + 1}{\sqrt{2}} = \frac{1}{2} \times \frac{(\sqrt{3} - 1)(\sqrt{3} + 1)}{2} \] Using the difference of squares: \[ A = \frac{1}{2} \times \frac{3 - 1}{2} = \frac{1}{2} \times \frac{2}{2} = \frac{1}{2} \] ### Final Answer Thus, the area of the triangle is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a vector a hati + beta hatj be obtained by rotating the vector sqrt3 hati + hatj by an angle 45^(@) about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices (alpha, beta) , (0, beta) and (0,0) is equal to:

Let A(3,4) B(5,0), C(0,5) be the vertices of a triangle ABC then orthocentre of Delta ABC is (alpha, beta) Find alpha + beta

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

The vector veca=alpha hati+2hatj+betahatk lies in the plane of vectors vecb=hati+hatj and vecc=hatj+hatk and bisects the angle between vecb and vecc . Then which one of the following gives possible values o alpha and beta? (A) alpha=2, beta=1 (B) alpha=1, beta=1 (C) alpha=2, beta=1 (D) alpha=1, beta=2

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha/beta + beta/alpha

Let A vector veca =alpha hati + 2hatj + beta hatk (alpha, beta in R) , veca lies in the plane of the vectors, vecb= hati + hatj and vecc= hati -hatj+4hatk . If veca bisects the angle between vecb and vecc , then :

If alpha and beta are acute angles and cot alpha=(1)/(4) and cot beta=(5)/(3)* prove that alpha-beta=45